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Abstract. We p w n t  an integrability criterion for rational mappings based on two requirements. 
First. t h  a given point should have a unique pre-image under the mapping and, second, that 
the spontanmusly appearing singularities be confined to a few iteration steps. We present 
several examples of known integrable mappings that meet these requirements and, also. use our 
algorithm in order to derive new examples of integrable mappings. 

1. Introduction 

Integrability detectors are rare even for continuous systems. Recent progress in the 
integrability of discrete systems has spurred activity in this direction, leading to interesting 
results of great variety. In order to characterize discrete integrability, Arnold has introduced 
and investigated the concept of complexity for mappings in a plane [l]. Arnold defines the 
complexity from the number of intersection points of ~a fixed curve with the image of a 
second given curve under the kth iteration of the mapping. For a polynomial mapping 
the growth of the number of intersection pdmts is in general exponential in k. However, 
for integrable mappings the growth is only polynomial in k. This result is included in a 
more general analysis presented by Veselov 121 discussing the dynamics of multiple-valued 
mappings (correspondences) and the growth of the number of different images (and pre- 
images). Veselov, too, has l iked  integrability to slow growth. 

Our approach of discrete integrability is different from the above since it was based, 
essentially, on rational (rather than polynomial) mappings. For rational mappings, an 
important question is what happens whenever accidentally (i.e. depending on the initial 
conditions) a denominator vanishes, leading to a divergent mapping variable. In general 
one expects this singularity to propagate indefinitely under the mapping iterations, but it 
turns out that for integrable mappings these siugularities disappear after a few steps. This 
observation has led to the proposal of the singularity confinement [3] criterion as a detector 
of discrete integrability. Its efficiency has already been proven through the derivation of 
new integrable systems leading to the discovery of discrete Painlev6 equations [4]. 

It appears that the two notions of slow growth and confined singularities play an 
important role in the characterization of the integrable discrete systems. In what follows, 
we will try to present our approach which is based on both notions. We will, first, introduce 
the notion of pre-image non-proliferation as well as the algorithm for its assessment. 
Based on the slow-growth principle, we claim that  the number of preimages of a given 
point should not grow exponentially fast, which, when we consider mappings rather than 
general correspondences, can only mean a single pre-image. Therefore, for the practical 
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implementation we will present of this criterion, we will require that the inverse of the 
mapping be uniquely defined. The singularity confinement conjecture will also be extended 
in the following sections, essentially through the extension of the notion of singularity 
of a mapping. Apart from the singularity related to a divergence, we will consider as 
appearance of a singularity all the instances where the mapping accidentally loses some 
degrees of freedom. (The precise mechanism will become clear in section 3.) Confinement 
of this singularity consists in the recovery of these lost degrees of freedom usually through 
the appearance of an indeterminate form like O/O. While pre-image non-proliferation is only 
a necessary condition for integrability, we conjecture that its combination with singularity 
confinement leads to a sufficient condition for integrability of discrete systems. 

In what follows, we will limit ourselves to rational explicit mappings, i.e. 

X I  = fr(x1, X Z ,  . . . X N )  i = 1, . . . N (1) 

with rational 5 ’ s  and where the xi’s are, in general, complex numbers. Integrability in our 
sense means one of the following things. 

(a) Existence of a sufficient number of rational @&XI, . . . XN) = C,, the values of which 
are invariant under the action of the mapping. 

(b) Linearizability of the mapping through a Cole-Hopf-type transformation xi = P J Q i  
whereupon the mapping reduces to a linear one for the Pi’s, Qi’s. 

(c) Linearizability through a Lax pair. In this case, the mapping is the compatibility 
condition of a h e a r  system of differential-difference, q-difference or pure difference 
equations. 

The above are not definitions but rather illustrations of the various types of integrability. 
It may well occur, as in the case of Quispel’s mappings [5], that the existence of one 
invariant reduces the mapping to a correspondence of the form F(x ,  x‘)  = 0 that can be 
parametrized in terms of elliptic functions. In other cases, integration using the rational 
invariants may lead to a transcendental equation like the discrete Painlev6 ones. All of the 
above types of integrability have been encountered in the discrete systems that we have 
studied [6,7]. The reason for the above classification is to emphasize the parallel existing 
between the continuous and discrete cases. In the next section, we examine specific examples 
of mappings and along the way formulate our conjecture on preimage non-prolieration. 

2. Examples of integrable mappings and Ule pre-image non-proliferation criterion 

Let us start with a very simple example of rational mapping, in which the growth of the 
number of preimages must be invoked. In [6], we studied the one-component, two-points 
mapping of the form 

where f is rational. Singularity confinement considerations lead to 

with positive integer uk, provided that for all k ,  OW # a. Indeed, if x = at some step, 
then x’ diverges, X”  = a and x”’ is finite. So the mapping propagates without any further 
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difficulty. However, if we consider the backward evolution, then (2) solved for x in terms 
of x’ leads to multi-determinacy and the number of pre-images grows exponentially with 
the number of backward iterations. Indeed, the only mapping of the form (2H3) with no 
growth is just the homographic 

, a x + b  
c x + d  

x =~- (4) 

which is the discrete form of the Riccati equation [SI. Thus, in this case, the argument 
of slow growth of the number of pre-images of x is essential in deriving the form of the 
discrete Riccati equation. 

Another classical example in the domain of integrable mappings is the Quispel family. 
In 151, Quispel and collaborators have shown that the mappings 

(5) 

are integrable, provided the A’s, gi’s  are specific quartic polynomials involving 18 
parameters. We remark here that the mapping is staggered, i.e. while x‘ is defined in terms 
of ( x ,  y ) ,  y’ is defined in terms of (x ’ ,  y ) .  It is precisely this staggered structure that allows 
one to define a unique pre-image to ( x ,  y ) .  As Quispel has s h o p  in [9], the mapping (5) is 
reversible, which means that it can be written as a product of two involutions. It is not clear 
whether reversibility is a prerequisiste for integrability, hut, though reversibility ensures that 
the pre-image is unique, there still exist reversible systems that are not integrable. 

Reversible integrable mappings have also been considered by the Paris group [IO] in 
their works based on the study of lattice spin and vertex models. They have shown that 
the transformations involved are in fact symmetries of the Ymg-Baxter equations. These 
symmetries are constructed as the product of a pair of non-commuting involutions: thus the 
mapping is reversible and generically of infinite order. Still, it is interesting to investigate 
the mechanism for the non-proliferation of pre-images in this case and present the algorithm 
that one should use. Let us illustrate this in the case of the mapping 

g1(x’) - gz(x‘)y  y‘ = 
sz(x’) - g w ) Y  

, f l ( Y )  - f z ( y ) x  
f d Y )  - f d Y h  

x =  

x + y - 2YX2 
x ( x  - Y )  

, x + y - Z x y Z  y’ = x =  
Y ( Y  - x )  

The first step consists of considering the system of N equations xi - f i (xk )  = 0 (here 
N = 2 and x =XI,  y = x2) and successively eliminating all hut one of the xk’s.  In the case 
of the mapping (6) the resultant in x after eliminating y (or vice-versa) is a fifth-degree 
polynomial in x (resp y) with’coefficients depending on x’ and y’. Next we factorize this 
resultant. Pre-image non-proliferation requires that only one factor depend on x’, y‘. the 
other factors being associated with indeterminate forms O/O. We find in this particular 
example the factors xz (x2  - 1) (resp y z ( y 2  - 1)) and one last factor leading to 

x‘ - y‘ 
y’Z + x‘y’ - 2 

y’  - x‘ 
Y = x n + j ’ y ‘ -  2 X =  (7) 

This is the typical situation for integrable rztional mappings. The factorization of the 
resultant gives the unique inverse of the mapping along with particular values (here 
x = y = 0, +l) corresponding to the indeterminate forms of the mappings. 

Slow-growth arguments have been used by Veselov in his studies of the integrability 
of mappings and correspondences. In particular, he has studied in [2] the integrability 
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of polynomial mappings and has shown that the mapping x‘ = P ( x ,  y). y’ = Q(x .  y) is 
integrable (in the sense that it possesses a non-constant polynomial integral Q ( x ,  y ) )  if there 
exisrs a polynomial change of coordinate variables transforming the mapping to triangular 
form: 

x’ = a x  + P(y)  y’ = By + y (8) 

for polynomial P .  Moreover, he has shown that in this case the complexity of the mapping 
is bounded. The important feature in (8) is the fact that the equation for y‘ is linear. Thus 
the inversion of (8) is straightforward. Thanks to the triangular form, the integration of (8) 
is reduced to the solution of two affine mappings, first for y and then for x.  

One more interesting illustration of the pre-image non-proliferation algorithm is provided 
by the discrete Painlev6 equations that we derived in [ I l l  and which are not of Quispel 
form. We have found there that the mappings 

where a = constant and z is linear in the lattice variable, represent a discrete form of the 
Pf equation. In order to check the preimage non-proliferation, we eliminate x (or y) from 
(9) and factorize the resultant. We find, as expected, factors related to exceptional points 
x = 0, y = 0, y = -1, and a unique inverse that reads 

(10) 
a(z - x’)(y’ + 1) y =  x’(x’y’ + z)[(x‘y‘ +zp + a(y’ + l)(z - x’) ]  

X =  
ab‘ + (x ’y’+2)2 ’ 

Thus in this example, too, as in all previous ones, integrability is related to non-growth of 
the number of pre-images. 

3. Extending the singularity confinement criterion 

In the previous section, we encountered several examples of integrable mappings, all of 
which satisfied the no-growth property. Here, we will apply the pre-image non-proliferation 
criterion in order to construct explicitely integrable mappings. However, since this criterion 
furnishes only a necessary condition for integrability, we will supplement it by singularity 
confinement, our conjecture being that the combination of the two criteria is sufficient for 
discrete integrability. 

Applying the pre-image non-proliferation algorithm to a general mapping can easily 
lead to untractable calculations. If, however, there are not too many free parameters in the 
mapping the implementation of the criterion is straightforward. In what follows, we will 
limit ourselves to simple two-component, two-point mappings of the form 

where Q, Ql and Q2 are quadratic polynomials in x and y. By applying a general linear 
transformation on this mapping we can reduce the (common) denominator to one of the two 
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canonical forms Q = x y  - 1 or x2 - y (or any of the degenerate forms Q = x y ,  x2  -’ 1 or 
x2). Let us start with the mapping h: 

J =  

(126) 
,,, = bmx2 + b n x y  + bo2y2+ biox + boiy +bcm 

x y  - 1 

One assumption that we will introduce here is = 0 since it leads to a great simplification 
of the calculations. As a first step in the preimage non-proliferation algorithm we eliminate 
y between (12a) and (126) for given x’ and y’ and obtain a resultantthat is a fourth-degree 
polynomial in x .  We demand that three of the roots be independent of x‘, y‘ and denote 
them by x1. xz and x3. We then demand that whenever x = x i ,  y = l / x i ,  i = 1 , 2 , 3 ,  both 
x’ and y’ have the indeterminate form 010. Calling 

= X 1  + X 2 + X 3  P = xlx2 + x 2 X 3  f x3xl n = ~ 1 x 2 ~ ~  (13) 

we find a unique pre-image if and only if 

a10 = -azoZ a01 = -azoIl = a2oP - a l l  

blo = - b p Z  - boz/l l  bo, = -bmn - bo2P/n  (14) 

b o o = b z o P - b l l + b m Z / n .  

With (14) the mapping satisfies the pre-image non-proliferation requirement. This is not, 
however, sufficient for integrability. What we must also demand is that the mapping 
have confined singularities. The simplest kind of singularity is whenever the denominator 
vanishes, i.e. Q(x ,  y )  = 0 or, in our example, y = I / x .  However, since in the present 
case the numerators Ql, Q2 are also quadratic, the singularity is confined in one step: 
Q ( x ,  y) = 0 leads to diverging X I ,  y’ and, because the degrees of numerators and (common) 
denominator are equal, this leads to finite X ”  and y ” . ~  So the study of this singularity does 
not introduce any constraint on the mapping. But the vanishing of the denominators is not 
the only singularity of the mapping: a subtler singularity may exist. 

Normally for a general N-component mapping, N free parameters, introduced by the 
initial conditions, must be present at every step. Now, it may happen that at some iteration 
one (or more) degress of freedom be lost. The condition for this to occur is that the 
Jacobian of (x i ,  x;, . . . xh)  with respect to ( X I ,  X Z ,  . . . X N )  vanishes. For a general mapping 
xi = fi (xk) this reads 

ax;iaxl ax;iax2 . . . ax;/ax, 
= O  

I axhiaxl axh/ax2 . . . axhiax, I 
How can this singularity be confined? By this we mean that the mapping must recover the 
lost degree of freedom. For a rational mapping of the kind we are considering, this can be 
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realized if some of the mapping’s variables assume an indeterminate form O/O. In that case 
new free parametes can be introduced and the mapping recovers its full dimensionality. 

Let us apply this criterion to the mapping h defined by (lza),  (12b). The Jacobian 
readily factorizes and we obtain three factors, leading to either of the equations: 

x + x i  - z + y n / x i  = o i = 1; 2 , 3 .  (16) 

Thus whenever (16) is satisfied a singularity appears (in the sense of the loss of one degree 
of freedom). For the confinement of this singularity (at the x”, y” level) we must have 
x’y’ - 1 = 0 and the numerators of both x” and y” must vanish. First we supplement 
the condition for the vanishing denominator x‘y‘ - 1. This leads to a number of equations 
that, in fact, fully specify the remaining a, b coefficients and moreover put a constraint on 
X I .  X Z ,  x3. The latter can be written (up to an odd permutation of X I ,  X Z ,  x3) as 

(17) 3XIX2X3 = X f X 3  + .;XI + x:xz. 

For the a, b we obtain 

In fact, the simplest way to parametrize equations (14), (17) and (18) is to take all 3 a 
as a basic parameter. Introducing one further parameter, U,  we can express x l  , xz, x3 as: 
x1 = -am, xz = a(l+ I/@) and x3 = a / ( l+m) .  It turns out that once conditions (14), (17) 
and (18) are implemented, the numerators of both x” and y” automatically vanish. Thus the 
mapping h is singularity confining and, according to our conjecture, it should be integrable. 
This is indeed the case and one invariant can be found. It reads: 

i.e. the product on the LHs, instead of being strictly constant, alternates in sign between 
even and odd iterations. One should, in principle, take the square of the LHS in order to find 
a.true constant. A closer inspection of the mapping (motivated by the form of the invariant) 
reveals an even simpler structure: the mapping is periodic with period 6,  i.e. h6 = I .  

Finally, the mapping can be cast in a much simpler form if one uses the scaling freedom 
in order to reduce the number of the parameters from two to one. We shall not enter into 
these details but just give the final result: 

, - x z + x y  + u x  - y + 2  - U  x =  
x y  - 1 

(206) 
-x2+  (2 - u ) x y  + y* + (1 +u)x + ( U  - 4)Y + 1 - 0 ~ y’ = ~~ 

xy - 1 

In an analogous way we can treat the mapping P: 
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with a02 = 0. As in the previous case, we can ask that the resultant of the elimination 
of y between (21~) and (21b) for given x’, y’ (which is quartic in x ) ,  possess three roots 
independent on x’, y’, namely XI, x2 and x3,  corresponding to O/O indeterminacies. In a 
second step, the singularity confinement can be implemented in a perfect parallel to the case 
of the mapping h, leading to: 

, x 2 C - - X y - x P + r l  x =  
x 2 - y  

with C, P ,  rl given by (13). The freedom of transformations (x  -f x + a ,  y + y+2ux+a2) 
can be used in order to simplify this mapping. Finally, only one parameter remains and the 
mapping reads 

This mapping is indeed integrable, but in a trivial way: it is just an involution, p2 = I .  
Still, the important point here is that the conjecture concerning the integrability of mappings 
that have non-proliferating preimages and confined singularities is once again satisfied. 

4. Conclusion 

In the preceding sections, we have presented in detail the pre-image non-proliferation 
Criterion, which, we conjecture, is a necessary condition for the integrability of rational 
mappings. Based on the slow-growth principle, this criterion consists in requiring that, in 
order to be a candidate for integrability, a rational mapping possesses a unique inverse. 
Thus, the number of pre-images of a given point through the mapping does not grow with 
the number of iterations (while an exponential increase is, generically, expected). Since this 
Criterion offers only necessary conditions it cannot predict integrability but can be used as 
a fast ‘screening’ procedure. The successful candidates can then be tested for singularity 
confinement, which is more stringent but more difficult to implement. We conjecture the 
combination of the two criteria (pre-image non-proliferation and singularity confinement) to 
be an integrability predictor of the same efficiency as the Painlev6 method for continuous 
systems. Several results already exist based on this approach and we expect the extension 
of the singularity confinement presented here to further widen its range of applications. 
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